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Abstract

A hybrid spatial di�erencing scheme for the discrete ordinates method is proposed to predict radiation intensity in
a two-dimensional rectangular enclosure. Since the hybrid scheme incorporates the strengths from the diamond
scheme and the step scheme, and takes into consideration the characteristics of the medium, it is more accurate and

yields more stable results. Several other spatial di�erencing schemes are examined to address the e�ect of numerical
smearing (or false scattering). Predictions from the present hybrid scheme are compared to those of the other
schemes for transparent, purely absorbing, purely scattering, and absorbing±emitting±isotropically scattering media.

It is found that the proposed scheme predicts more stable and less smeared results than the others. 7 2001 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Discrete Ordinates Method (DOM) has received the

main consideration for the analysis of radiative heat

transfer [1±3]. DOM is the method that approximates

Radiative Transport Equation (RTE), which is integro-
di�erential equation, to ®rst order di�erential

equation. Its algorithm is simple and it is easy to apply

it to typical Finite Volume Method (FVM) [4]. How-
ever, there are some problems that must be addressed

in the application of DOM. The ray e�ect may occur

due to the approximation of continuously distributed
ray to discrete ordinates, and false scattering [5] (or

numerical smearing [6]) may result from the disagree-

ment of directions between grid and ordinate.

Many researchers have studied the modi®cation of
DOM to overcome these defects. Raithby and Chui [7]

and Kim and Baek [8] proposed FVM and modi®ed
DOM, respectively. Pessoa-Filho and Thynell [9]
employed an analytical method and Mohamad [10]

proposed the use of Local Analytical DOM
(LADOM). Cheong and Song [11] used second order
DOM for compatibility with typical transport

equations.
False scattering occurring in multi-dimensional

problems cannot be excluded completely from DOM,
but it can be minimized by using a proper spatial dif-

ferencing scheme [12]. Among the spatial di�erencing
schemes the step and the diamond/central di�erencing
schemes have been used most often. Since these

schemes are not accurate and not stable, the positive
[13±15] and the variable-weight schemes [16,17] were
developed to overcome these shortcomings. These

schemes use the ®x-up procedure to assist the diamond
scheme to predict physically appropriate solution. The
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various spatial di�erencing schemes such as exponen-

tial and higher-order schemes have been recently devel-
oped. However, these schemes also need the ®x-up
procedure and their computational procedure is not

simple. Chai et al. [12] presented the characteristics of
various spatial di�erencing schemes, and Jessee and
Fiveland [6] introduced the bounded High Resolution

(HR) scheme.
In the present work, a new hybrid spatial di�eren-

cing scheme has been developed to obtain an accurate

and stable solution to RTE. The present hybrid scheme
minimizes numerical smearing of DOM in 2D rec-
tangular enclosure and does not require the ®x-up pro-
cedure by excluding the appearance of physically

unrealistic radiation intensity. It has been applied to
four di�erent media: transparent, absorbing, scattering,
and absorbing±emitting±isotropically scattering media.

These results are compared to those of other spatial
di�erencing schemes.

2. Governing equation

The radiative transport equation for 2D Cartesian
coordinates is as follows:
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The following discrete ordinates equation can be
obtained by applying DOM to Eq. (1).
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Integrating Eq. (2) over a control volume shown in
Fig. 1 gives
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Ime ÿ Imw
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P

�
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The ®nal discretized equation for nodal point P can be
obtained by applying spatial di�erencing equation to
Eq. (3). For mm > 0, xm > 0 directions, spatial di�eren-

cing equation and discrete ordinates equation are as
follows:

Nomenclature

Eb emissive power, pIb

f spatial di�erencing weight
G incident radiation

I radiation intensity
Ib black body intensity
Lx, Ly dimensions of a rectangular enclosure

N total number of ordinates
S source term in Eq. (2b)
s radiation direction

s distance along a beam in a direction s

w angular weight
x, y Cartesian coordinate

Greek symbols
b extinction coe�cient, b � k� ss

Dx, Dy dimensions of a control volume
F scattering phase function
k absorption coe�cient

ss scattering coe�cient
m, x directional cosine
O solid angle

Superscripts and subscripts
' incident direction

m ordinate index
E, W, N, S labels for nodes within control volume
e, w, n, s labels for interfaces between control

volumes

H hybrid spatial di�erencing scheme
P nodal point

Fig. 1. Typical internal control volume.
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where f mx and f my are spatial di�erencing weights to the
x and y directions, respectively.

For mm > 0, xm > 0 directions, Eq. (5) gives the radi-
ation intensity at nodal point P and downstream inten-
sities Ime and Imn can be obtained from Eq. (4).

In general, spatial di�erencing weights used in the
step and diamond di�erences are f � f mx � f my � 1:0
and f � f mx � f my � 0:5, respectively. It is known from
the numerical consideration that diamond di�erence is

more accurate than step di�erence, but diamond di�er-
ence sometimes produces unrealistic under-shooting
(including the occurrence of negative intensity) and/or

over-shooting whereas step di�erence is always physi-
cally stable.
To prevent these shortcomings in the diamond

scheme, Lathrop and Carlson [15] proposed the nega-
tive intensity ®x-up procedure that sets the negative
intensity to zero, and Lathrop [13] proposed the posi-

tive scheme that always ensures positive intensity. But
they did not consider the appearance of over-shooting.
Jamaluddin and Smith [16] and Sanchez and Smith
[17] used the variable-weight scheme that increases the

spatial di�erencing weight f from 0.5 to 1.0 until the
proper intensities are encountered. But this requires
additional iteration and more computational time to

predict proper intensities. Also, it needs physically
strict limits of intensity to increase the con®dence of
computed results.

3. Analysis

3.1. A hybrid spatial di�erencing scheme

For convenience, only the positive directions are
considered in the hybrid spatial di�erencing scheme.
The discrete ordinates equation given by Eq. (5) can

be rewritten as follows:

ImP �

mmDy
f mx

Imw �
xmDx
f my

Ims

mmDy
f mx
� xmDx

f my
� A

� B �6a�

where

A � bPDxDyr0 �6b�

B � Sm
P DxDy

mmDy
f mx
� xmDx

f my
� bPDxDy

r0 �6c�

Following conditions can be obtained from the con-
sideration of physical situation.

CASE I Non-participating media

0RImP Rmax
�
Imw , I

m
s

�
for A � 0, B � 0

�7a�

CASE II Purely absorbing media

0RImP < max
�
Imw , I

m
s

�
for A > 0, B � 0

�7b�

CASE III Absorbing, emitting and/or scattering

media

BRImP < max
�
Imw , I

m
s

�� B

for A > 0, B > 0
�7c�

If ImP satis®es CASES I and II, then it also satis®es

CASE III.
For a non-participating medium (CASE I), the step

and the diamond schemes show the aforementioned

problems, but they have the characteristics of predict-
ing the exact solutions to special directions.
Consider a rectangular enclosure with black walls,

containing a non-participating medium as shown in

Fig. 2(a). When the marked part �0:25RxR0:5, y � 0�
of the lower wall only emits a unit black body intensity
�Ib � 1), the distributions of radiation intensity from

step and diamond schemes for a special direction are
depicted in Fig. 2(b) and (c), respectively. It is shown
that the step and the diamond schemes predict exact

solutions for the directions of the edge and the diag-
onal of control volume, respectively.
A hybrid spatial di�erencing scheme for a non-par-

ticipating medium is constructed to use these character-

istics of the step and diamond schemes as follows:

f mH, trans � f mx � f my �
1

1� gm
�8a�

where

gm �

8>>>><>>>>:
Dy
Dx

����mmxm
����, Dyjmmj < Dxjxmj

Dx
Dy

����xmmm
����, DyjmmjrDxjxmj

�8b�

The hybrid spatial di�erencing weight f mH, trans for a

I.-K. Kim, W.-S. Kim / Int. J. Heat Mass Transfer 44 (2001) 575±586 577



non-participating medium, being a function of the geo-
metry of grid and the direction of ordinate, has a value
between 0.5 and 1.0. For the directions of edge and di-

agonal of control volume, it has the values of 1.0 and
0.5, and each value corresponds to the step and the dia-
mond schemes, respectively.

Like previously derived for a transparent medium
(CASE I), there also exists a spatial di�erencing weight
that can predict the exact solution for a special direc-
tion in an absorbing medium (CASE II).

The RTE and the exact solution for an absorbing
medium is given as:

dI

ds
� kI � 0 �9�

I � Iueÿks �10�
where Iu and s represent the upstream value of the
intensity and distance along a beam in a direction s,

respectively. These relations can be applied to a typical
control volume shown in Fig. 3.
The nodal point value IP and downstream value Id

can be derived from Eqs. (4) and (10) as follows:

IP �
ÿ
1ÿ fH, absorb

�
Iu � fH, absorbId �11�

IP � Iueÿks �12a�

Id � Iueÿk�2s� �12b�

Substituting Eq. (12) into Eq. (11), the hybrid spatial
di�erencing weight for an absorbing medium is given
by

fH, absorb � 1

1� eÿks
�13�

Here, fH, absorb represents spatial di�erencing weight for
an exact solution when positions of Iu and Id coincide
with the positions of Ime , I

m
w , I

m
n , and Ims : That is, the

exact solution can be obtained when the direction of

the ordinate coincides with the direction of the grid.
gm and eÿks in the denominators of Eqs. (8) and (13)

represent the relation between the grid and the ordi-

nate, and the characteristics of medium, respectively,
and they have values between 0 and 1. For the medium
which satis®es Eq. (2) and has the characteristics of

two weights, f mH, trans and f H, absorb, the spatial di�eren-
cing weight, f mH , can be de®ned as:

f mH � f mx � f my � min

�
1

gm � eÿbsm
, 1

�
�14a�

where gm is given by Eq. (8b) and the distance along a
beam in a direction s, sm, is de®ned as follows:

Fig. 2. Intensity distribution in a special direction �Dx � Dy): (a) schematic of test problem; (b) step scheme for mm � 0, xm � 1; (c)

diamond scheme for mm � xm � 1=
���
2
p
:

Fig. 3. Control volume and the direction of radiative trans-

port.
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The following three cases have been solved to examine

if f mH , given by Eq. (14a), is stable and applicable to
non-participating, absorbing, and absorbing±emitting±
scattering media, respectively.

Chai et al. [12] showed analytically that for mm > 0,
xm > 0 directions, with Imw � 0 and Dx � Dy in the
purely absorbing medium, the step scheme predicts
physically realistic solution, but the diamond scheme

predicts the negative value of Imn for mmrxm: The
hybrid scheme considered in this study is applied to
the case of Chai et al. and the following results are

obtained.
For mmrxm, the following two relations are

obtained by combining Eqs. (4), (5), and (14):

ImP �
ÿ
mmeÿbs

m � xm
�
xmIms � SmDymmÿ

mmeÿbsm � xm
�ÿ
mm � xm

�� bDymm
�15�

Imn �
mmeÿbs

m � xm
mm

 
ImP ÿ

mmeÿbs
m � xm ÿ mm

mmeÿbsm � xm
Ims

!
�16�

The condition for Imn r0 in Eq. (16) is given by:

�1ÿ eÿbs
m �Ims rbDy

mm

 
mmeÿbs

m � xm ÿ mm
mmeÿbsm � xm

Ims

ÿ Sm

b

!
�17�

For the purely absorbing medium �Sm � 0, b � k), Eq.
(17) has more severe condition than for the absorbing±

emitting±scattering medium �Smr0). The condition
for Imn r0 in the purely absorbing medium becomes

F � �1ÿ eÿks
m � ÿ kDy

mm

mmeÿks
m � xm ÿ mm

mmeÿksm � xm
r0 �18�

F automatically satis®es the condition given by Eq.
(18), irrespective of the values of mm, xm, k, and Dy.
The distribution of F for a special case �k � 1:0,
Dy � 0:01, mm�xm� is depicted in Fig. 4.
For mm < xm, the condition Imn r0 is always satis®ed

in the same manner for mmrxm: The radiation inten-
sity of the right face of the control volume, Ime , is
given by Eq. (19) and always has a positive value.

Ime �
mmeÿks

m � xm
mm

ImP �19�

3.2. Spatial di�erencing scheme and numerical smearing

Fig. 5 shows the distributions of the radiation inten-

sity for arbitrary direction from several spatial di�eren-
cing schemes when there exists a non-participating
medium in the enclosure shown in Fig. 2(a). Whereas

smearing and under-/over-shooting appear in the step
and the diamond schemes, respectively, it can be seen
that the hybrid scheme predicts more accurate results
and does not show the under-/over-shooting. Not

included in this ®gure, Lathrop's positive scheme [13]
de®ned in Eq. (20) predicts the same results as the
hybrid scheme.

f mx � max
�
1ÿDm

y =D
m
x

ÿ
Dm

y � 2
�
, 0:5

� �20a�

f my � max
h
1ÿDm

x =D
m
y

ÿ
Dm

x � 2
�
, 0:5

i
�20b�

where

Dm
x �

bDx
jmmj

�20c�

Dm
y �

bDy
jxmj

�20d�

The modi®ed-exponential scheme of Chai et al. [18]
given by Eq. (21) becomes identical to the step scheme

for a non-participating medium �b � 0).

Ime � ImP eÿbd
m
e �

�
Sm

b

�
P

�1ÿ eÿbd
m
e � �21a�

Fig. 4. Distribution of F due to the change of mm:

I.-K. Kim, W.-S. Kim / Int. J. Heat Mass Transfer 44 (2001) 575±586 579



Imn � ImP eÿbd
m
n �

�
Sm

b

�
P

�1ÿ eÿbd
m
n � �21b�

where d m
e and d m

n represent the distance from an arbi-
trary point to the center point of east and north faces
of control volume, respectively, according to the direc-

tion of ordinate.
When a square enclosure with one hot �Ib � 1, y �

0� and three cold black walls is ®lled with purely

absorbing medium with absorption coe�cient of unity,
the intensity distributions from the hybrid scheme are
shown in Fig. 6. It is shown that there is little numeri-

cal smearing in the direction of the diagonal of control
volume. It is similar to the one in a non-participating
medium and it also indicates that the smaller the grid
size becomes, the closer the results get to the exact sol-

ution.
Fig. 7 shows the intensity distributions from various

schemes for the particular grid �2Dx � Dy� and direc-

tion �mm � 0:47925, xm � 0:87768� in the enclosure
considered above. Similar to the case of a non-partici-
pating medium, the step scheme (a) shows strong nu-

merical smearing, but the positive scheme (b) with

steep intensity distribution exhibits weak numerical

smearing. However, the positive scheme yields physi-

cally unrealistic results with negative intensities. Hence,

it needs the ®x-up procedure. It is also shown that the

modi®ed-exponential scheme (c) exhibits strong nu-

merical smearing like the step scheme. But its intensity

distribution near the hot wall seems to be predicted

more properly than that of the step scheme, because

the exponential-based spatial di�erencing scheme rep-

resents the absorption characteristics of the medium

more precisely. It is shown that the hybrid scheme (d)

predicts less smeared results than the step and modi-

®ed-exponential schemes and presents physically realis-

tic results. Comparing the intensity distributions of

Figs. 6(b) and 7(d), it is observed that there appears

little numerical smearing in a diagonal direction of

grid, but there exists smearing in other directions. This

results from the fact that it is impossible to completely

eliminate numerical smearing in all directions except

the diagonal direction due to the characteristics of the

rectangular grid.

Shown in Fig. 8 are intensity distributions for a

special direction �mm � 0:8040087, xm � 0:5773503�

Fig. 5. Intensity distribution for non-participating medium in an arbitrary direction �mm � 0:52250, xm � 0:85264�: (a) step scheme;

(b) diamond scheme; (c) hybrid scheme.

Fig. 6. Intensity distribution of hybrid scheme for purely absorbing medium: (a) Dx � Dy, mm � xm; (b) 2Dx � Dy, mm � 2xm:
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when the square enclosure is ®lled with purely absorb-
ing medium �k � 1� of unit emissive power �Eb � 1). It

is shown that bounded HR: CLAM (c) of Jessee and
Fiveland [6] and the hybrid scheme (d) predict results
closer to the exact solution (a) than the step scheme

(b).

4. Applications

4.1. Surface radiation in a rectangular enclosure

For an analysis of surface radiation in a 2D rec-
tangular enclosure the model considered by Sanchez

and Smith [17] has been used. As shown in Fig. 9, the

enclosure consists of one left black wall and three

black walls with temperatures of 310 and 300 K, re-
spectively.

In Fig. 9, the dimensionless wall distance �z� has its

origin at the lower left-hand corner of the west wall
and extends clockwise around the enclosure. An ordi-

nates set with equal angular weights and angular incre-
ment was used, and M represents the number of

ordinates per quadrant.

The local heat ¯ux distributions at the surface for
z � 2:0±2:5 (the surface from the upper right-hand cor-

ner to the center of the right wall) are depicted in

Fig. 10 using a 60� 60 grid system. It can be seen that
the local heat ¯ux distribution oscillates when M is 10,

15, and 25, but the amplitude of oscillation decreases

Fig. 7. Intensity distribution for purely absorbing medium in an arbitrary direction �mm � 0:47925, xm � 0:87768).
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as M increases. This phenomenon results from the ray
e�ect that causes radiation intensity not to continu-

ously arrive at the wall due to discrete ordinates. For

M � 50, the ray e�ect disappears and the result is the

same as the one from Radiosity/Irradiation Method

(RIM). For M � 15 and 25, local heat ¯ux near z � 2

(the upper right-hand corner) shows some deviation

from one of the RIM because the ray e�ect is clearly

seen at the diagonal direction, where there is no nu-

merical smearing. Numerical smearing does not occur

in this case because when M is odd (15, 25), the ordi-

nate direction coincides with the diagonal direction of

the grid. On the contrary, when M is even, the devi-

ation of the heat ¯ux disappears due to the even distri-

bution of numerical smearing to all directions.

Overall heat ¯uxes and view factors on the north

and east walls for 20� 20 and 60� 60 grid systems are

Fig. 8. Intensity distribution for absorbing-emitting medium in an arbitrary direction �mm � 0:8040087, xm � 5773503).

Fig. 9. Schematic diagram of a rectangular enclosure.
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presented in Table 1. The view factors are enclosed

within curly brackets and the results for the 60� 60

grid are enclosed within parentheses. It is shown that

the results from the step scheme, modi®ed-exponential

scheme, and variable-weight scheme of Sanchez and

Smith [17] deviate further from those of the RIM as M

increases. This means that the amount of numerical

smearing increases as the number of ordinates

increases. But the positive and hybrid schemes predict

the same results in a non-participating medium �b � 0�
with a square grid �Dx � Dy). The results from both

schemes are closer to those of the RIM than other

schemes because these two schemes produce less nu-

merical smearing than the others do. When M is even,
both of them predict the exact solution, and it is

observed, especially for M � 10, that the e�ect of oscil-
lation of local heat ¯ux (Fig. 10) is countervailed due
to averaging over the wall. However, these two

schemes produce results di�erent from RIM with odd
values of M, since there exists a direction where ray
e�ect is very signi®cant.

4.2. Purely absorbing medium

The physical situation considered in this case is a
square enclosure with purely absorbing medium
�kLx � kLy � 1� and only the bottom wall �y � 0� is
kept hot �Ib � 1). S-10 ordinates set and a 59� 59 grid
system were used for analysis. Average incident radi-
ation at four locations is presented in Table 2 to exam-

ine the accuracy of each spatial di�erencing scheme.
The modi®ed-exponential scheme used the results

from the step scheme to avoid divergence in the initial

computation since it includes a source term, Sm, in Eq.
(21).
Table 2 shows that most of the spatial di�erencing

schemes predict the results closer to those of Pessoa-
Filho and Thynell [9] except at the center of the enclo-
sure, �0:5Lx, 0:5Ly). It seems that this results from the
di�erence between DOM and the analytical method of

Pessoa-Filho and Thynell [9]. It is also shown in
Table 2 that the positive and hybrid schemes predict
the results more accurately over the other schemes.

However, the positive scheme needs the ®x-up pro-
cedure since it may produce negative intensity when a
non-uniform grid clustered to the wall is used to exam-

Fig. 10. Local heat ¯uxes at the east wall for the rectangular

enclosure.

Table 1

Overall heat ¯uxesa

DOM (M ) Heat ¯ux

Step, modi®ed-exponential Variable-weight [17] Positive, hybrid

North wall

10 ÿ18.351 (ÿ18.709) ÿ18.790 (ÿ18.844) ÿ18.849 (ÿ18.849) {0.292893}
15 ÿ18.324 (ÿ18.683) ÿ18.764 (ÿ18.834) ÿ18.912 (ÿ18.912) {0.293862}
20 ÿ18.315 (ÿ18.674) ÿ18.755 (ÿ18.824) ÿ18.849 (ÿ18.849) {0.292893}
25 ÿ18.311 (ÿ18.670) ÿ18.751 (ÿ18.820) ÿ18.872 (ÿ18.872) {0.293242}
50 ÿ18.305 (ÿ18.664) ÿ18.745 (ÿ18.814) ÿ18.849 (ÿ18.849) {0.292893}
RIM ÿ18.849 {0.292893}

East wall

10 ÿ27.654 (ÿ26.937) ÿ26.775 (ÿ26.667) ÿ26.657 (ÿ26.657) {0.414214}
15 ÿ27.706 (ÿ26.989) ÿ26.827 (ÿ26.687) ÿ26.532 (ÿ26.532) {0.412275}
20 ÿ27.725 (ÿ27.007) ÿ26.846 (ÿ26.708) ÿ26.657 (ÿ26.657) {0.414214}
25 ÿ27.733 (ÿ27.016) ÿ26.854 (ÿ26.716) ÿ26.612 (ÿ26.612) {0.413516}
50 ÿ27.744 (ÿ27.027) ÿ26.865 (ÿ26.727) ÿ26.657 (ÿ26.657) {0.414214}
RIM ÿ26.657 {0.414214}

a 20� 20 grid, �60� 60 grid), {view factor}.
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ine the e�ect of grid. It is also evident from Table 2

that the hybrid scheme predicts more accurate results
than the step and modi®ed-exponential schemes even
in the case of a non-uniform grid.

4.3. Purely scattering medium

For the purely scattering medium �ssLx � ssLy � 1�
in the same enclosure considered in the previous case,
Fig. 11 shows the comparison of the distributions of

average incident radiation �G=4p� at x=Lx � 0:1, 0:3,
and 0.5 between the results of the hybrid scheme and
Thynell and Ozisik [19].
It is shown in Fig. 11 that the results of the hybrid

scheme with S-10 ordinates set agree well with those of
Thynell and Ozisik [19], except at x=Lx � 0:5 where
there exists a little disagreement between the two

results. It is believed that this disagreement is attribu-

ted to the ray e�ect.
Presented in Table 3 is the average incident radiation

at four locations in the enclosure to examine the accu-

racy of the results from the various spatial di�erencing
schemes in the case of a purely scattering medium.
Table 3 shows that in the case of uniform grid, the

results from the positive and hybrid schemes are closer
to those of Thynell and Ozisik [19]. However, in the
case of a non-uniform grid, the positive scheme needs

the ®x-up procedure as in the case of the purely
absorbing medium.

4.4. Absorbing±emitting±isotropically scattering medium

For the absorbing±emitting±isotropically scattering
medium �kLx � kLy � ssLx � ssLy � 0:5� the average

incident radiations at four locations are presented in
Table 4.
It is also shown that the hybrid scheme yields more

accurate results than the other schemes in both uni-

form and non-uniform grids, similar to the results of
previous two media.

4.5. Consideration of exponential function in the hybrid
spatial di�erencing scheme

In fact, the use of exponential function is expensive

to evaluate. Hence, the application of Taylor series
expansion to the exponential function may be helpful.
The maximum errors between truncated and original

forms of exponential function are presented in Table 5
when only the ®rst two terms in Taylor series expan-
sion are used in the case of a purely scattering me-

dium.
It is shown that the maximum error of weighting

factor is 36.237% when b � 10: However, the maxi-

Table 2

Incident radiation predicted by various spatial di�erencing schemes in the case of purely absorbing mediuma

G=4p

Position Grid Spatial di�erencing schemes

Step Positive Modi®ed-exponential Hybrid Pessoa-Filho and Thynell [9]

(0:5Lx, 0:5Ly) UG 0.11740 0.11632 0.11807 0.11607 0.11753

NG 0.11684 ± 0.11940 0.11648

(0:5Lx, Ly) UG 0.04107 0.03825 0.04041 0.03866 0.03863

NG 0.04234 ± 0.04115 0.03954

(0, 0:5Ly) UG 0.07445 0.07550 0.07336 0.07537 0.07525

NG 0.07343 ± 0.07215 0.07504

(0, Ly) UG 0.03055 0.02979 0.02933 0.02997 0.02986

NG 0.03083 ± 0.02993 0.02984

a UG Ð uniform grid; NG Ð non-uniform grid.

Fig. 11. Incident radiation for purely isotropically scattering

medium.
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mum error of incident radiation for this case is only
0.8%. Hence, it indicates that truncated forms of the
exponential function can be used without any signi®-

cant error.

5. Conclusion

Since the hybrid scheme proposed in the present
study incorporates the strengths from the diamond and

step schemes, and takes into consideration the charac-
teristics of the medium, it shows less numerical smear-
ing than the step scheme, and it does not have the
under-/over-shooting like the diamond scheme. The

hybrid scheme also does not need to iteratively modify
the spatial di�erencing weight as in the variable-weight
scheme, and its numerical procedure is much simpler

than other higher-order type schemes.
By applying the present hybrid scheme to 2D rec-

tangular enclosures with non-participating, purely

absorbing, purely scattering, and absorbing±emitting±

isotropically scattering media, the following con-

clusions are obtained:

1. Hybrid scheme yields the results closer to the exact

solution since it includes less numerical smearing

than other schemes such as step, diamond, positive,

and modi®ed-exponential schemes.

2. Hybrid scheme does not need the ®x-up procedure

since it predicts physically realistic results, irrespec-

tive of the ordinates set and medium.

3. It is shown that hybrid scheme using the ordinates

set with equal weights and equal angular increment

predicts more accurate results. It is desirable for the

hybrid scheme to use the ordinates set with equal

angular increment to reduce the imbalance of the

amount of numerical smearing, since the hybrid

scheme has little numerical smearing along the diag-

Table 3

Incident radiation predicted by various spatial di�erencing schemes in the case of purely scattering mediuma

Position Grid G=4p
spatial di�erencing schemes

Step Positive Modi®ed-exponential Hybrid Thynell and Ozisik [19]

(0:5Lx, 0:5Ly) UG 0.25000 0.25000 0.25000 0.25000 0.250

NG 0.25000 ± 0.25000 0.25008

(0:5Lx, Ly) UG 0.08933 0.08612 0.08951 0.08657 0.086

NG 0.09193 ± 0.09091 0.08770

(0, 0:5Ly) UG 0.14128 0.14231 0.14069 0.14210 0.142

NG 0.13999 ± 0.13942 0.14151

(0, Ly) UG 0.05935 0.05878 0.05870 0.05887 0.059

NG 0.05990 ± 0.05898 0.05887

a UG Ð uniform grid; NG Ð non-uniform grid.

Table 4

Incident radiation predicted by various spatial di�erencing schemes in the case of absorbing±emitting±isotropically scattering med-

iuma

Position Grid G=4p
spatial di�erencing schemes

Step Positive Modi®ed-exponential Hybrid Thynell and Ozisik [19]

(0:5Lx, 0:5Ly) UG 0.16290 0.16224 0.16368 0.16234 0.1631

NG 0.16242 ± 0.16474 0.16225

(0:5Lx, Ly) UG 0.05719 0.05399 0.05668 0.05444 0.0542

NG 0.05872 ± 0.05769 0.05539

(0, 0:5Ly) UG 0.09782 0.09891 0.09705 0.09875 0.0988

NG 0.09666 ± 0.09581 0.09830

(0, Ly) UG 0.04026 0.03957 0.03927 0.03981 0.0396

NG 0.04063 ÿ 0.03978 0.03961

a UG Ð uniform grid; NG Ð non-uniform grid.
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onal direction of the grid, but it shows numerical
smearing in other directions of the grid.

4. The hybrid scheme predicts stable results even with
a non-uniform grid and seems to be more superior
to other schemes. This characteristic suggests that

the hybrid scheme proposed in this study can be ap-
plicable to the combined heat transfer problem,
including radiative heat transfer in the ¯uid ¯ow

and thermal analysis.
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Table 5

Maximum error between truncated and original forms of exponential functiona

b Maximum error of weighting factor (%) Maximum error of results (%)

1.0 UG 0.063 0.0005

NG 0.274 0.002

5.0 UG 1.643 0.05

NG 7.675 0.1

10.0 UG 7.090 0.5

NG 36.237 0.8

a UG Ð uniform grid; NG Ð non-uniform grid.
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